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The equilibrium geometry of F l  in its ground electronic state. 
A simple example of the effects of symmetry breaking on an 

observable molecular pro pert y 

by ROBERT MURPHY and HENRY F. SCHAEFER 111 
Department of Chemistry, University of California, 

Berkeley, California 94720, U.S.A. 

ROSS H. NOBES and LEO RADOM 
Research School of Chemistry, Australian National University, 

Canberra, A.C.T. 2601, Australia 

and 

RUSSELL M. PITZER 
Department of Chemistry, Ohio State University, 

Columbus, Ohio 43210, U.S.A. 

A wide variety of theoretical methods have been applied to a very simple but 
notoriously difficult problem, the calculation of the bond distance in F:. All 
theoretical methods used the same basis set, the standard Huzinaga-Dunning 
double-zeta plus polarization (DZ+P) set, designated F (9s 5p ld/4s 2p Id). All 
methods which enforce inversion symmetry and go beyond second-order pertur- 
bation theory are qualitatively successful, giving bond distances within 0.05 8, of 
experiment. Methods not enforcing inversion symmetry are successful to within 
0.03A if based on a restricted HartreeFock (RHF) starting point. When the 
wavefunction is not constrained to have inversion symmetry, methods based on an 
unrestricted Hartree-Fock (UHF) starting point are less satisfactory, yielding 
errors in the F: bond distance ranging from 0.092 8, (full fourth-order perturbation 
theory, UMP4) to 0850 8, (single-determinant UHF). 

1. Introduction 
A recent theoretical study by Farnell et al. (1983) examined structural predictions 

for open-shell systems at various levels of theory. Both the restricted Hartree-Fock 
(RHF) (Roothaan 1960) and unrestricted Hartree-Fock (UHF) (Pople and Nesbet 
1954) methods were considered, while electron correlation effects were examined by 
appending second- and third-order Msller-Plesset perturbation theory (Moller and 
Plesset 1934, Pople et al. 1976) to the latter. In general, predicted geometries were in 
good agreement with experiment, typical deviations being 0.01 8, in bond distances and 
2" in bond angles. However, one very simple molecule, F:, proved to be particularly 
troublesome. The purpose of the present theoretical study described in this article is to 
examine the F: ground-state bond distance in considerably greater depth than was 
possible in a broad-ranging study such as that of Farnell et al. (1983). 

The value of the bond distance for the X 'IT, ground state of the F; molecular ion is 
known from recent experiments (Tuckett et al. 1983) to be re = 1.305 0.007 A. Farnell 
et al. (1983) reported two sets of calculated bond distances in F;. In the first set, in 
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230 R. Murphy et al. 

which neither spin nor spatial symmetry was enforced, UHF equilibrium bond 
distances were obtained using three basis sets of increasing flexibility: a minimum basis 
set (STO-3G) (Hehre et al. 1969), a small split-valence basis set (3-21G) (Binkley et al. 
1980), and a larger split-valence basis set augmented by d functions (6-31G*) 
(Hariharan and Pople 1973). The three predicted structures were re = 1.407 8, 
(STO-3G), 1.731 8, (3-21G), and 00 (6-31G*), the latter implying that F,f is unbound 
(dissociative to F+ F’) at this level of theory except for a small long-range attraction of 
a non-chemical nature. With the 6-3 lG* basis set, second and third-order perturbation 
theories (designated UMP2 and UMP3) gave predictions of 1.184 and 1.185& 
respectively. All five theoretical predictions are in poor agreement with the experi- 
mental bond distance. 

Farnell et al. (1983) found in a second set of calculations that better agreement with 
the experimental bond distance was obtained when inversion symmetry was enforced 
on the wavefunctions. These calculations yielded bond lengths at the Hartree-Fock 
level of 1.226 (STO-3G), 1.327 (3-21G) and 1.2328, (6-31G*), and UMP2 and UMP3 
lengths of 1.41 1 and 1.320 8, with the 6-31G* basis set. Nevertheless, Farnell et al. (1983) 
expressed hesitation concerning the general use of such symmetry-constrained 
procedures, stating that ‘this approach is rather unsatisfactory because the solutions 
obtained are not true minima in the full UHF space. Furthermore, the processes leading 
to an asymmetrical answer are presumably also acting in heteronuclear diatomics 
where symmetry cannot be enforced’. We believe the point raised to be of inherent 
interest and have therefore considered in the present research all possible subgroups of 
the homonuclear diatomic point group Dmk 

The observation of Farnell et al. (1983) concerning inversion symmetry in F: is an 
interesting and very simple example of a theoretical problem known as the ‘symmetry 
dilemma’, or ‘symmetry breaking’.? Symmetry breaking occurs when an approximate 
wavefunction fails to display the full symmetry of the molecule. The most widely 
discussed (McKelvey and Hehre 1973, McKelvey and Berthier 1976, Paldus and 
Veillard 1978, Baird et al. 1979, Voter and Goddard 1981a,b, Feller et al. 1983) 
example of symmetry breaking is the allyl radical,$ which RHF theory incorrectly 
predicts to have an asymmetrical equilibrium geometry. Closer to the F: problem is 
the X z X l  ground state of N;, where symmetry breaking with respect to inversion has 
been demonstrated by de Castro et al. (1981). Such symmetry breaking in N,f leads to a 
charge distribution which is skewed relative to the two atoms. 

2. Basis set 
There are several possible strategies with which to approach the molecular 

structure of F:. One approach is to take a given method, perhaps second-order 
perturbation theory, and explore the problem with progressively larger basis sets, 
hoping eventually to approach the basis set limit. A good start in this direction has 
already been made for the UHF, UMP2, and UMP3 methods by Farnell et al. (1983). 

?For a discussion of symmetry breaking, see Dixon (1971), Walker (1971), Manne (1972), 
Bagus and Schaefer (1972), McKelvey and Hehre (1973), Yarkony and Schaefer (1974), Wadt and 
Goddard (1975), McKelvey and Berthier (1976), Davidson and Borden (1976,1977), Jackels and 
Davidson (1976), Borden (1976), Poppinger et al. (1977), Seeger and Pople (1977), Paldus and 
Veillard (1978), Chambaud et al. (1978), Miiller et al. (1979), Benard (1979), Baird et al. (1979), 
Benard and Paldus (1980), Borden et al. (1980,1982), Voter and Goddard (1981 a, b), de Castro 
et al. (1981), Engelbrecht and Liu (1983), Feller et al. (1983) and Hoffmann et al. (1984). 

$ Further theoretical studies of the allyl radical include Levin and Goddard (1975 a, b). 
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Geometry of F 2' in its ground electronic state 23 1 

However, since the present study is more methodological in nature, we have taken the 
alternative approach of choosing a single, good quality, relatively standard basis set 
and using this consistently with a comprehensive range of theoretical methods. The 
basis set chosen was the Huzinaga-Dunning contracted gaussian double-zeta plus 
polarization (DZ+P) set. This basis set, seen in table 1, may be designated F 
(9s 5p ld/4s 2p Id), and is sufficiently small so as to be useful for much larger molecules. 

3. Methods based on spin-restricted Hartree-Fock orbitals 
A number of theoretical predictions based on the restricted Hartree-Fock method 

are shown in table 2. Among the single-configuration wavefunctions, we have identified 
three distinct levels of symmetry breaking. The first entry in table 2 is labelled D,, and 
is the completely proper Roothaan RHF wavefunction (Roothaan 1960). That is, the 
molecular orbitals transform according to the irreducible representations of the D,, 
point group. In particular, this requires that the degenerate orbitals in the F: electron 
configuration 

1,; 10,22a,220,2 l.n;30,2 1x9 X 'ng 
be equivalent. Specifically, 

1%x/ 1 Z U Y  = 1 %x/ 1 Z g y  = X / Y  

When the (.n,,ny) equivalence is removed, the point group symmetry of F; is 
reduced from D,, to I&,,. Table 2 shows that there is a Dmh+DZh symmetry breaking, 
with the total energy being lowered by 0.00187 hartrees. This symmetry breaking is 
accompanied by a very small increase (0.0003 A) in the equilibrium bond distance, from 
1.2207 (D,,) to 1.221OA (I)',,). Both the D,, and D,, bond distances are in much 
poorer agreement with the experimental re of 1.305di (Tuckett et al. 1983) than is 
normally expected (Schaefer 1974) for the DZ + P SCF level of theory. 

Table 1. Standard contracted gaussian basis set for the study of symmetry breaking in the F: 
ground electronic state. 

Orbital Contraction 
Type exponent coefficient 

S 

S 

S 

S 

S 

S 

S 

S 

S 

P 
P 
P 
P 
P 
d 

9994.7900 
1506.0300 
350.2690 
104.0530 
34.8432 
4.3688 

12.2164 
1.2078 
0.3634 

44.3 5 5 5 
10.0820 
2.9959 
0.9383 
0.2733 
0.9 

0402017 
0.015295 
0.073110 
0.246420 
0.612593 
0.242489 
1 .o 
1 .o 
1 .o 
0.020868 
0.1 30092 
0.396219 
0.620368 
1 .o 
1 .o 
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232 R. Murphy et al. 

Table 2. Theoretical predictions for the X *lTS ground state of F: based on spin-restricted 
Hartree-Fock (RHF) wavefunctions constrained to different spatial symmetries. 

Point Bond distance, re Total energy 
group Wavefunction (4 (hartrees) 

Dwh RHF 
Dmh TCSCF 
DZh RHF 
DZh TCSCF 
DZh CISD 
DZ, Davidson-corrected 

CISD 
C m ,  RHF 
CZ" RHF 
CZ" CISD 
c z v  Davidson-corrected 

CISD 
Experiment? 

1.221 - 198.16343 
1.278 - 198'21479 
1.221 - 198.16530 
1.288 - 198'22003 
1.296 - 198.50422 
1.332 - 198'536750 

1.332 - 198.17668 
1.329 - 198.17776 
1.284 - 198.49232 
1.307 - 198.53359f 

1.305 f 0.007 

TTuckett et al. (1983). 
0 Non-variational energy (see text). 

A symmetry breaking of larger extent occurs with respect to D,, when the centre of 
inversion is no longer enforced. Moreover, a significant change in the predicted 
equilibrium internuclear separation accompanies the lowering from Dmh to C,, 
symmetry. The lowering in the total energy is 0.01325 hartrees, or 8.3 kcalmol-l, a 
significant amount in chemical terms. The increase in bond distance is 0.1 11 A, from 
1.221 (DmJ to 1.332A (C,,). Perhaps moreimportantly, this C,, bond distance is now 
only 0*02A longer than experiment, and represents a nearly acceptable level of 
agreement with the true structure. 

The only additional energy lowering observed for F l  in decreasing the symmetry 
from C,,  occurs when the (zX, ny) equivalence is removed, lowering the symmetry 
imposed to C,,. An energy lowering of 0OO108 hartrees is seen in table 2, and the bond 
distance is decreased by 0.003 A, from 1-332 (C,,) to 1.329 A (C,,). Further reductions 
in point-group symmetry to C, and C ,  (no elements of symmetry in the latter case other 
than the identity) yield total energies identical to the C,, energy reported in table 2. The 
entire energy lowering from Dmh to Czv is 0-01433 hartrees, or 9.0kcalmol-'. 

The simplest interpretation of the large energy lowering due to symmetry breaking 
is that the RHF wavefunction for the X ground state of F: is a poor approximation 
to the true wavefunction. Therefore, configuration interaction (CI) wavefunctions have 
been used to address the problem. The CI treatment included all single and double 
excitations relative to the appropriate RHF reference configuration. The core 
molecular orbitals (la, and la, in D,, point group) were held doubly occupied in all 
configurations. This leads to 1918 configurations for point group D,, and 3767 
configurations for point group C,,. 

The CI results for F i  are summarized in table 2. One of the most interesting results 
is that the D,, orbitals provide a lower CI energy (by 0.01 190 hartrees) than do the C,, 
orbitals. Given that the single-configuration D,, energy was 001246 hartrees above the 
analogous C,, energy, this represents a significant reversal. It may be concluded that, 
while the removal of the constraint of inversion symmetry lowers the single- 
configuration RHF energy considerably, the D,, orbitals nevertheless provide the 
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Geometry of F 2’ in its ground electronic state 233 

better orbitals for a CI expansion. The CI using D,, orbitals yields a bond distance re of 
1.296 A, just 0.002 8, outside the experimental error bars (Tuckett et al. 1983). The CI 
based on C,, orbitals yields re = 1.284 A, or 0021 8, less than experiment. 

A simple correction for the effect of unlinked clusters, specifically quadruple 
excitations, is that due to Davidson (1974), namely 

AEQ = (1 - c;)AEsD (2) 
where c,, is the coefficient of the SCF wavefunction in the CISD wavefunction and AEsD 
is the correlation energy due to single and double excitations, namely E,,sD - E,,,. 
Since this simple correction has widely been found to be helpful, we have included in 
table 2 bond distance predictions made in this manner. Using D,, orbitals, the 
Davidson-corrected bond distance is 1.332 A, some 0.027 8, longer than experiment. It 
should be noted that a further extension of the basis set will almost certainly reduce the 
predicted bond distance (Schaefer 1974). On the other hand, the effect of inclusion of 
triple substitutions may lead to a lengthening of the F-F bond (see below). Using C,, 
orbitals, the Davidson-corrected bond distance for F: is 1-307 8,, in good agreement 
with experiment. This latter result would also be obtained by ignoring symmetry 
entirely, since we have earlier observed that there is no symmetry breaking below point 
group C,,. In this sense, all the C,, results reported here (SCF, CI, Davidson-corrected 
CI) avoid the symmetry bias described as ‘rather unsatisfactory’ by Farnell et al. (1983). 

Before concluding this section, it is reasonable to ask if there is some RHF-based 
method (of correct symmetry) simpler than CISD which renders the F: bond distance 
qualitatively correct. An obvious choice is the two-configuration (TC) SCF model, 
which for F: includes the second configuration 

10; lo,220;20,2 1430,21n,3 (3) 
in addition to (1). Such a TCSCF treatment is analogous to that used to describe the 
proper dissociation of F, to two F atoms (Das and Wahl 1966). Moreover, since the 
predicted D,, and D,, RHF bond distances are much too short, the idea of adding 
some antibonding character, in the form of the double excitation 30; +3& obviously 
recommends itself. The resulting D,, and D,, TCSCF optimized geometries are 
included in table 2. The importance of the second configuration (3) is apparent from the 
total energies, not to mention the predicted bond distances. For a D,, symmetry 
constraint, the energy difference between the one and two-configuration SCF 
wavefunctions is 0.05 136 hartrees. This difference clearly corresponds to an important 
near-degeneracy correlation effect (Clementi and Veillard 1966), since the entire 
correlation energy associated with a normal electron pair is only about 0.04 hartrees 
(Nesbet 1967). The importance of the second configuration is also seen in its large 
coefficient, 0-255, corresponding to 6 5  per cent of the wavefunction. The predicted D,, 
TCSCF bond distance is 1.278 8,, still 0.027 8, less than experiment, but an improve- 
ment of 0.057 8, over the analogous one-configuration SCF result. The D,, TCSCF 
bond distance is 1.288 A, and thus only 0.017 8, less than the experimental equilibrium 
internuclear separation. 

4. Methods based on spin-unrestricted Hartree-Fock orbitals 
The spin-unrestricted Hartree-Fock (UHF) method provides an alternative path to 

the description of the electronic structure of open-shell molecules such as F:. 
Theoretical predictions based on UHF orbitals are seen in table 3. Given the previously 
described experience with the RHF method, the UHF investigations were restricted to 
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234 R. Murphy et al. 

Table 3. Theoretical predictions for the X 'IIs ground state of F l  based on spin-unrestricted 
Hartree-Fock (UHF) wavefunctions constrained to different spatial symmetries. 

Theoretical Bond distance, re Total energy 
Point group method? (4 (hartrees) 

DZh UHF 1.223 - 198.17602 
DZh UMP2 1.392 - 198'53762 
D2h UMP3 1.310 - 198.52167 
D2h UMP4DQ 1.308 - 198.52403 
D,, UMP4SDQ 1.322 - 198.53260 
D,, UMP4SDTQ 1.352 - 198.54743 
C," UHF 2.155 - 198.22795 
C2" UMP2 1.180 - 198.50262 
C Z V  UMP3 1.180 - 198.50031 
C Z V  UMP4DQ 1.180 - 198.50269 
C2" UMP4SDQ 1.212 - 198.50971 
C," UMP4SDTQ 1.213 - 198.51924 

Experiment $ 1.305+0-007 

t The abbreviation UMP4SDTQ implies the use of fourth-order Msller-Plesset pertur- 

$ Tuckett et al. (1983). 
bation theory including single, double, triple and quadruple excitations. 

point groups D,, and C,". Here we discuss first the DZh results (in which inversion 
symmetry was enforced on the UHF orbitals) and then the C,, predictions (where 
inversion symmetry was ignored). 

4.1. D,, symmetry results 
Perhaps the first observation to be made concerning table 3 is that the UHF and 

RHF bond distances are very similar in point group D,,,. Specifically, the RHF bond 
distance of 1.221 A is increased to 1-223A when UHF theory is used. The energy 
difference ( E m F -  E R H F )  is however significant, -0.01072 hartrees. For the RHF 
wavefunction, the expectation value (S') is precisely S(S + 1) = 3/4, while for the UHF 
wavefunction ( S 2 )  is marginally higher at 0.766. One concludes that the D,, RHF and 
UHF wavefunctions share the same problem leading to an unrealistically short bond 
distance for F:. 

Continuing in D,, symmetry, second-order perturbation theory (UMP2) over- 
compensates for the deficiencies of UHF theory. From a bond distance prediction 
0.082 too short (UHF), UMP2 proceeds to a prediction (re = 1.392 di) that is 0-087 di 
too long with respect to experiment. This tendency to overestimate the importance of 
double excitations (Slater determinants differing by two spin orbitals from the Hartree- 
Fock reference function) is a general finding and is by no means restricted to the F: 
bond distance (Krishnan et al. 1980a). Table 3 shows that third-order perturbation 
theory (UMP3) predicts an re value of 1.310 A, which lies within the experimental error 
bars. Again, this is not a surprising result, since UMP3 is known to provide a fairly 
realistic estimate of the importance of double excitations (Frisch et al. 1980). 

Table 3 gives three separate entries associated with fourth-order perturbation 
theory (UMP4). The first of these, labelled UMP4DQ, incorporates only the 
contributions in fourth order from double and quadruple excitations (Krishnan and 
Pople 1978). Alternatively, this form of fourth-order perturbation theory adds to the 
UMP3 energy expression the fourth-order doubles contribution and, for the first time, 
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Geometry of F ;  in its ground electronic state 235 

a contribution from quadruples. The predicted bond distance is re = 1.308 A, in close 
agreement with experiment. Adding the fourth-order contribution of single excitations 
(UMP4SDQ) leads to a slight extension of the bond distance to re = 1.322 A. However, 
when the fourth-order contribution of triple excitations is appended (giving 
UMP4SDTQ, the complete fourth-order treatment) (Krishnan et al. 1980 b), the bond 
distance again increases, this time to 1.352A. At this level, the F: bond distance is 
0.047 & 0.007 8, longer than experiment. 

To this discussion of the results of table 3, some comments must be added 
concerning the adequacy of the standard DZ + P basis set used in this research. It seems 
likely (Schaefer 1974) that all the bond distances in tables 2 and 3 will be shortened 
when significantly more complete basis sets are applied to the F l  problem. As a simple 
example, the DZ + P SCF method yields a bond distance of 1.082 A for the N, molecule 
(de Castro et al. 1981), while the Hartree-Fock limit has been known for some time 
(Cade et al. 1966) to be 1.066 A, some 0-016 A shorter. Such a basis set effect would bring 
the UMP4SDTQ bond length mentioned above into better agreement with 
experiment. 

4.2. CZV symmetry results 
The UHF equations also have solutions without inversion symmetry. At the single- 

determinant UHF level, such symmetry breaking leads to a lowering of the energy. 
However, examination of table 3 indicates that, analogous to the RHF + CI results 
discussed above, the Msller-Plesset calculations based on D,, orbitals lead to a lower 
energy than those based on C,, orbitals. 

As anticipated from the UHF/6-31G* SCF results of Farnell et al. (1983), there is no 
minimum near 1.3A for the ground state of F l  when inversion symmetry is not 
enforced. At r(F-F)= 1.3 d;, the CZv UHF total energy is - 198.18488 hartrees, some 
0.01695 hartrees below the analogous D,, UHF energy. The expectation value (S ' )  for 
r = 1-3 8, is 0.815, compared with0.767 for the D,, UHF wavefunction at the same bond 
distance. Thus, the lowering of the spatial symmetry from D,, to Czv is accompanied by 
a shift in the expectation value (P) away from the correct value 075. 

Farnell et al. (1983) noted that, when inversion symmetry is removed, the UHF 
method does not predict a normal equilibrium bond distance for F;. This observation 
has been pursued in the present research to the extent of locating the precise minimum 
in the C,, UHF potential curve. This minimum occurs at 2.155 A, as seen in table 3. 
Given that this bond distance is nearly twice the experimental value, we must concur 
with Farnell et al. (1983) that the truly unrestricted HF  method does not describe the 
F: molecular ion in a satisfactory manner. 

Although the five different C,, perturbation theory approaches summarized in 
table 3 improve upon the UHF result, they all yield bond distances considerably 
shorter than experiment. The most complete level of theory, the full fourth-order 
method (UMP4SDTQ), predicts r,(F:)= 1.213 A, nearly 0 1  8, less than the experi- 
mental value of 1.305 k 0.007 A. It may be reasonably concluded that fourth-order 
perturbation theory based on a UHF starting point without inversion symmetry does 
not give a satisfactory description of the structure of F:. This is one example for which 
an RHF starting point (CZV entries in table 2) is evidently preferable. 

5. Concluding remarks 
The F: ion is clearly one of the more difficult cases for quantum electronic structure 

theory, but it is also clear that accurate results can be obtained when sufficient 
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236 R. Murphy et al. 

effort is put into the calculation. It is apparent that the effort required depends 
appreciably on the type of molecular orbitals used. 

Ordinarily, one would expect that the lowest-energy orbitals-those computed 
with the fewest restrictions on their form-would be the best basis on which to build 
configuration-interaction or perturbation-theory refinements. A growing number of 
examples, now including F i ,  show this expectation to be invalid. 

Relaxing the rotational symmetry restriction on F: (Dmh+DZb Cmv+CZv) allows 
the nx and n,, orbitals to take different shapes when they are occupied by different 
numbers of electrons. The effects are comparatively small: a maximum of 0.005 hartrees 
in energy and 001 A in bond distance. 

Relaxing the inversion symmetry (Duh+Crov, DZh+CZv) allows orbitals, and 
therefore the positive charge, to concentrate more at one end of the molecule than the 
other. This change, when applied to RHF wavefunctions, is somewhat larger: 
0.01 hartrees in energy and 0 1  8, in bond distance. 

Relaxing the spin eigenfunction requirement (RHF-UHF) has only a modest 
effect unless coupled with relaxation of the inversion symmetry restriction: 0.01 har- 
trees in energy and 0.002 8, in bond distance for the D,, case vs 0.05 hartrees in energy 
and 0.8 A in bond distance for the C,, case. 

Nevertheless, at the singles-and-doubles configuration interaction and second- 
order perturbation theory levels, and at all higher levels of correlation, the calculations 
based on the more restricted wavefunctions gave lower energies and generally better 
bond distances. This phenomenon has been noted in a number of other cases, including 
N, over a considerable range of bond distance (Bartlett 1981), ONCNfor a large range 
of geometries (Bell 1981), and COzHf, also for several geometries (Frisch et al. 1985). 

The possible conclusion to be drawn is that when moderate bond distances are 
involved, correlated calculations are best based on self-consistent-field wavefunctions 
which have been constrained to have the same spin and spatial symmetry properties 
that the exact solution possesses. In extreme cases, such as diatomic molecules at large 
internuclear distance, where the RHF wavefunctions are grossly inadequate, this 
conclusion clearly does not apply. Another type of exception may be illustrated by the 
excited singlet states of trimethylenemethane at the ground-state D,, geometry 
(Yarkony and Schaefer 1974), where the D,,-constrained singlet wavefunctions are also 
seriously in error. 

The need for a general solution to the problem of obtaining orbitals for correlated 
wavefunctions is a prime reason for the wide current interest in MCSCF wavefunctions, 
of which the two-configuration wavefunctions used here are the simplest type. The 
difficulties in treating F l  by simple conventional methods provide another indication 
of the need for further development of the techniques for obtaining electronic 
wavefunctions. 
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